
1

Screen Space Reflections (SSR)
Josselin Somerville Roberts

https://github.com/JosselinSomervilleRoberts/MyOpenGlRenderer.git

Abstract—In this paper, we will describe what Screen Space
Reflections are and why they are an interesting approximation
of real reflections. Then, we will describe in more detail how
to compute such reflections by computing ray marches both in
the view space and directly in the textures. Some shading tricks
will also be detailed to improve the rendering. Finally, we will
showcase a few problems with SSR such as ghost shadowing,
aliasing, glitches near the borders, and more.

Fig. 1: Without (above) and without (below) SSR activated

I. INTRODUCTION

Adding reflections to a scene is a basic effect increasing
greatly the realism of a given rendering. While reflections can
easily be computed with ray tracing, this method is incredibly
slow as ray tracing is not well suited for parallelism and
therefore not able to run on most GPUs. On the other hand,
rasterizing is a fast method, that can be computed in parallel.
However, most rasterizing pipelines loop through every
fragment and save the shaded result based on the depth buffer

value. This means that there is no easy way to compute a ray
reflection on a fragment and also that even if we do compute
such a ray, it is not possible in the rasterizing pass to find if
this ray intersects a primitive as the rendering is computed
fragment by fragment.

At first thought, cube maps seem like good solutions but
they do not allow self-reflection and become extremely slow
for moving backgrounds, which is no the case with SSR.

This is where SSR enters. The idea behind Screen Space
Reflections is to take advantage of the already rasterized image
without reflections. SSR uses deferred shading and while many
passes can give better results, only two passes are necessary:

• First do a normal pass to simply save all the information
necessary for shading using the depth buffer. In the
implementation presented later, the information used is
geometry-based (position and normal) and regarding the
material (albedo, roughness, and metalicness).

• In the second pass, we simply shade a quadrangle using
a classic BRDF thanks to the textures. In addition, we
can apply SSR. To do so, for every pixel, if the pixel
is metallic, a ray is computed from the camera to the
pixel. Thanks to its normal, the reflected ray can easily
be computed. Then, the only thing left is to march along
the ray and regularly check if the ray intersects an object.
To do so, we compute the corresponding UV coordinates
of the position along the ray and check the depth buffer
to see if the ray intersects the scene. The only thing left
is then to shade the pixel if an intersection was found
and apply a few tricks to make the results less noisy and
better looking.

• (A third pass can be done to filter the results in order
to reduce the noise. This is especially useful for rough
surfaces which can lead certain pixels to have weird
reflections).

While many post-processing treatments such as ray reuse,
multilevel raymarching or even temporal filtering can be added
to improve the results, in this paper we will focus on only the
two first passes and highlight common problems with SSR.

II. BASIC IMPLEMENTATION

A. First Pass

The First Pass is pretty straightforward. On the C++ side,
we initially create the gBuffer, a frameBuffer used to store
the textures. In order to have as less textures as possible, we
store the position (3D) and depth (1D) in one 4D texture, the
normal (3D) and the roughness (1D) in another 4D texture
and the albedo (3D) and the metalicness (1D) as the last

2

texture. We decided not to handle transparent materials as it
would complicate the SSR process (a solution would be to
render transparent objects after opaque objects, sorted by
distance to the camera without overwriting the depth buffer
as it is usually done. Then to handle reflections, the closest
depth of an opaque object could be stored as the depth but
for the color, there are no good solutions. One solution would
be to simply ignore the transparent objects for the reflections.
Another solution would be to change the albedo of the opaque
fragment due to ray going through the transparent object -
albedonew = (albedoopaque+α ∗ albedotransparent)/(1+α).
However, this solution would lead to some artefacts as
there are no guarantees that the ray would go through this
transparent fragment; in fact, this is only true for rays parallel
to the view direction (therefore rays are not deflected)).

At first thought, it seems like shading fragments and saving
the resulting colors to a texture would increase the perfor-
mance as some fragments will be used for several pixels:
one time for the corresponding pixel and other times if a
reflected ray hit this fragment. However, the view positions
will be different for every shading of the same fragment. For
the direct rendering, the view position is simply the camera
position but for reflected rays hitting this fragment, the view
position will then be the camera position reflected. Therefore,
saving the shaded result will not make a big difference, this
is why shading is done during the second pass.

B. Second Pass

During the second pass, we render a basic quadrangle
using the previously filled textures. As explained above, for
every pixel we shade the pixel and compute a reflection.

Initially, to find an intersection, the method implemented
was a simple linear search, searching at regular intervals on
reflected rays. This search uses 3 parameters:

• SSRlinearsteps, the number of iterations
• Dmax, the maximum distance of the reflection (reflection

further than that will not be detected).
• tray, the thickness of the ray. If the difference between the

ray depth and the texture depth is less than the thickness
of the ray, then we consider that there is a hit. The
thickness needs to be set with respect to the number of
iterations as the less iteration there are, the bigger the
steps will be, therefore the thicker the ray must be.

The ray marching is done on the view space. To improve
a little bit the performance, this search can be directly done
in the textures. To do so, we compute two points along the
reflected ray, one at the fragment position where the ray is
reflected and the other along the reflected ray at Dmax. Then,
we can convert the view-space coordinates of these points as
UV coordinates using the following formula:

posprojected = projectionMat ∗ [(posview−space, 1]

posUV = 0.5 + 0.5 ∗ (posprojected.xy/posprojected.w)

Of course this requires to check that the end position is still in
the texture coordinates and to clip it otherwise, but with this

method we get a simple 2D-line to follow in the ray-marching
process.

C. Shading

Simply assigning the shaded fragment hit does not yield
realistic results, as shown below.

In all the following images, if not precised, the param-
eters used are the following:

• SSRlinearsteps = 500
• Dmax = 9
• tray = 0.1

Fig. 2: Assigning the fragment hit shaded color

To solve this issue, we propose a shading taking into account
the fragment shading and the reflected fragment shading using
the following formula (with C the shaded color):

CSSR = CFrag + (CReflect − CFrag) ∗ β

1) Metalicness: To begin with, let’s simply take the
metalicness into account (using: specexpo = 3, the specular
exponent):

β = Metalicness
specexpo

Frag

2) incorrect reflections: One issue at the moment is that
some reflections are simply not correct. If we look at the
previous figure, we can see that the reflection on the back
wall is not correct as it is using the front of the sphere and
not its back. On a symmetric object like a sphere, it is not
as much as a problem as on other objects but still, here we
see that the lights are not correct as all lights are behind the
camera, therefore, the back of the sphere and therefore the
reflection should be near pitch dark.

This issue can be solved at the cost of disregarding many
reflections. To do so we simply add the opposite of the
reflected direction z-component into β. This way, the reflected
rays towards the camera (with a negative z-component) are
not taken into account, and we get a smooth transition by

3

Fig. 3: Adding metalicness (with values of 0.9 for the floor
and 0.5 for the wall)

multiplying by the z-component even for rays facing the right
direction.

β = −Metalicness
specexpo

Frag ∗ rayreflect.z

Fig. 4: Removing reflections toward the camera

Hidden reflections could be solved using a multi-depth depth
buffer storing the X closest fragments. Of course, this would
multiply the complexity by X (in reality even more as a new
fragment would now need to be inserted while keeping the
depth buffer sorted for this fragment. In the worst case, all
X fragments would need to be moved, which means that the
complexity would be multiplied by X2).

3) Edges artifacts: As in the previous section, a major
problem of SSR is that what does not appear on the screen
can not be reflected. We treated the case of hidden objects
behind others but there is also the problem of objects out of
the screen. To solve this issue, we introduce an edge fading
factor efade to fade away this problem:

efade = clamp(1− |hitUV .x− 0.5| − |hitUV .y − 0.5|, 0, 1)

β = −Metalicness
specexpo

Frag ∗ rayreflect.z ∗ efade

Fig. 5: Without (left) and With (right) edge fading

D. Improving the quality - Binary Search

With only a few steps in the linear ray march and a large
thickness, the rendered reflection tends to make strips. This is
because due to the high thickness of the ray, the intersection
is not computed precisely. to solve this issue, we introduce a
Binary Search after the linear search to improve the precision
of the intersection. Having a large number of steps is still
useful as the binary search is only computed when the linear
search finds a hit, therefore with few steps in the linear search,
we will miss thin objects. However, the binary search improves
the rendered results.

Fig. 6: Withouth (left) and With (right) binary search with
For this figure: SSRlinearsteps = 50 and tray = 0.1 and
SSRbinarysteps = 10

E. Reducing the noise

In some places, SSR can introduce quite a lot of noise.
This can be caused by a bad choice of values for the number
of steps and for ray thickness. However, reducing the noise is
still important as finding these optimal values can be tricky.
One simple approach would be to use a third pass using a
simple kernel filter.

Here, we tried to implement an anti-aliasing method directly
in the second shader pass. This is usefull as part of the noise
is due to aliasing and because by sampling several rays for a
given pixel we can check if more than 50% ray hit something
removing some noise. The anti-aliasing simply consists of
slightly changing randomly the position of the fragment and
then averaging the response.

As shown on the figures above, the anti-aliasing method
proposed does not improve the result much, leaving a lot of
noise while dividing the framerate by 8. Instead of this method,
a third pass should have been used.

4

Fig. 7: Without (left) and With (right) anti-aliasing.
For this figure: SSRlinearsteps = 2500 and tray = 0.01,
With binary search and 8 samples per pixels

III. SSR ISSUES

A. Hidden reflection
In the figure below, the reflection of the rhinoceros is not

complete as some elements such as its belly are not visible on
the screen.

Fig. 8: Illustration of hidden reflections

B. Ghost shadowing
Ghost shadowing is a consequence of hidden reflections:

some fake shadows can appear. In the figure below, the wall
is reflected on the floor but because the rhinoceros hides a part
of the wall, in some places on the floor where the wall should
be reflected it is not as the rhinoceros was drawn on top of
the wall during the first pass.

C. Unrecursive reflections
placing two mirrors in front of each other yields a beautiful

result of the object reflected an infinite amount of times
smaller and smaller. In other words, the reflection of object
A onto B, i reflected onto A, then onto B and so on. With
SSR, there is only one step, meaning that the reflection of a
given object A onto B will not appear in the reflection onto A.

This can be solved by adding more passes. A solution
presented in the paper is to reuse the previous rendering (at
the previous frame). Therefore if the camera does not move at
each rendering, one level of reflection will be added. However,
this can lead to jittering if the camera moves fast.

Fig. 9: Illustration of ghost shadowing

Fig. 10: Illustration of the lack of self-reflections

IV. PERFORMANCES

The performance of SSR highly depends on the parameters
(mainly SSRlinearsteps) and if we use anti-aliasing. We will
use the rhinoceros provided as our benchmark. it is a good
model as it suite detailed and has small elements like its tail,
which requires a lot of steps in order to display the rhinoceros.

DISCLAIMER: All the following measures were made
with a GT1650 and an Intel i7.

With 100 linear steps, 10 binary steps, and a thickness of
0.1, the rhinoceros is pretty well rendered with a frame rate
of about 90FPS.

Below, is a figure illustrating the performances as the
number of linear steps increases:

FPS in terms of Linear steps
Steps 25 50 100 250 500 1000 2500
FPS 120 118 91 53 31 18 9
1/FPS 0.008 0.009 0.011 0.019 0.032 0.056 0.111

5

Fig. 11: FPS in terms of the number of linear steps

And if we plot the inverse FPS in terms of the number of
steps we check that this is indeed linear, as expected (not for a
small number of steps as the frame rate is capped at 120FPS):

Fig. 12: 1/FPS in terms of the number of linear steps

V. CONCLUSION

Screen Space reflections is a great way to solve the
reflection problem while keeping good performances.
However, the process is not as straightforward as it seems;
SSR requires fine-tuning some parameters and to then post
process in order to get good quality results. Adding a third
pass with a temporal filter would greatly improve the results
presented in this paper and could be an extension for the
future.

Here are a few pictures showing what bad parameters might
lead to:

Fig. 13: Thickness too high.
For this figure: SSRlinearsteps = 500 and tray = 0.25

Fig. 14: Not enough steps.
For this figure: SSRlinearsteps = 25 and tray = 0.05

	Introduction
	Basic Implementation
	First Pass
	Second Pass
	Shading
	Metalicness
	incorrect reflections
	Edges artifacts

	Improving the quality - Binary Search
	Reducing the noise

	SSR issues
	Hidden reflection
	Ghost shadowing
	Unrecursive reflections

	Performances
	Conclusion

